Metrics on unitary matrices and their application to quantifying the degree of non-commutativity between unitary matrices
نویسندگان
چکیده
منابع مشابه
Metrics on unitary matrices and their application to quantifying the degree of non-commutativity between unitary matrices
Quantum information processing is the study of methods and efficiency in storage, manipulation and conversion of information represented by quantum states. Many quantum information theoretic concepts are closely related to geometry. For instance, trace distance and fidelity, which come out of the study of distinguishability between quantum states, are closely linked with Bures and Fubini-Study ...
متن کاملUnitary Matrices and Hermitian Matrices
Unitary Matrices and Hermitian Matrices Recall that the conjugate of a complex number a + bi is a − bi. The conjugate of a + bi is denoted a+ bi or (a+ bi)∗. In this section, I’ll use ( ) for complex conjugation of numbers of matrices. I want to use ( )∗ to denote an operation on matrices, the conjugate transpose. Thus, 3 + 4i = 3− 4i, 5− 6i = 5 + 6i, 7i = −7i, 10 = 10. Complex conjugation sati...
متن کاملGraphs of unitary matrices
The support of a matrix M is the (0, 1)-matrix with ij-th entry equal to 1 if the ij-th entry of M is non-zero, and equal to 0, otherwise. The digraph whose adjacency matrix is the support of M is said to be the digraph of M . This paper observes some structural properties of digraphs and Cayley digraphs, of unitary matrices. We prove that a group generated by two elements has a set of generato...
متن کاملHaar-Distributed Unitary Matrices
We provide an elementary proof for a theorem due to Petz and Réffy which states that for a random n × n unitary matrix with distribution given by the Haar measure on the unitary group U(n), the upper left (or any other) k × k submatrix converges in distribution, after multiplying by a normalization factor √ n and as n → ∞, to a matrix of independent complex Gaussian random variables with mean 0...
متن کاملUnitary rank structured matrices
In this paper we describe how one can represent a unitary rank structured matrix in an efficient way as a product of unitary or Givens transformations. We provide also some basic operations for manipulating the representation, such as the transition to zerocreating form, the transition to a unitary/Givens-weight representation, as well as an internal pull-through process of the two branches of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information and Computation
سال: 2011
ISSN: 1533-7146,1533-7146
DOI: 10.26421/qic11.9-10-1